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ABSTRACT
Performance discretization maps numerical performance values to ordinal categories
or performance ranking labels. Norm-referenced performance discretization is
extensively applied in human performance evaluation such as grading academic
achievements and determining salary increases for employees. These tasks stipulate a
common condition that certain performance ranking labels might have no associated
performance values and are referred to as conditional discretization. Currently, the
only statistical method available for norm-referenced performance discretization is Z
score, which merely addresses partial conditions. To achieve a fully conditionally
norm-referenced performance discretization, this article proposes four novel
approaches enlisting a multi-modal technique that incorporates unsupervised
machine-learning algorithms and a heuristic method as well as a novel decision
function ensuring conditional unbiasedness. The machine-learning-based methods
demonstrate superiority over the heuristic one across most testing data sets,
achieving a conditional unbiasedness degree ranging from 0.11 to 0.82. On the other
hand, the heuristic method notably outperforms for a specific data set, exhibiting a
conditional unbiasedness degree up to 0.76. Leveraging the strengths of these
constituent methods enable the effectiveness of the proposed multi-modal approach
for conditionally norm-referenced performance discretization.

Subjects Computer Education, Data Mining and Machine Learning, Data Science
Keywords Data analysis, Human performance, Conditional performance discretization, Norm
referenced evaluation, Unbiasedness, Multi-modal technique, Clustering technique, Unsupervised
learning, Heuristic method

INTRODUCTION
In pursuit of performance improvement objectives, the assessment of current performance
is an indispensable practice across a human resource domain, including employee
performance evaluation, talent competition, standardized tests, and educational grading.
Ensuring the interpretability of performance evaluations for stakeholder understanding is
paramount. Two principle schemes for human-interpretable performance evaluation are
criterion-referenced and norm-referenced schemes (Wadhwa, 2008). The
criterion-referenced scheme translates measured performance into absolute rating labels
according to a predetermined rubric. For instance, any performance score falling between
90% and 100% is labelled as excellent, A, etc. On the other hand, the norm-referenced
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scheme converts performance values into relative ranking labels, depicting performance in
comparison to peers rather than comparison against predefined standards. For instance, a
score 85 out of 100 is assigned labels 90 percentile, high, AA, etc. Unlike the former
scheme, the performance ranking labels derived via the latter scheme inherently reflects
the relative quality of individual performances within a group and serves as the primary
focus of this article.

One fundamental characteristic of norm-referenced scheme (also shared by
criterion-referenced one) is that some performance ranking labels are not assigned in the
absence of corresponding performance values. This characteristic is termed as conditional
performance discretization (CPD) as opposite to unconditional performance discretization
(UPD). For CPD example, in the grading of test takers’ performances using A, B, and C
ranking labels, grade A might not be assigned if no test taker achieves a relatively high level
of qualitative performance. A conventional method that supports norm-referenced CPD is
Z score (aka normalized T score) (Wadhwa, 2008). This method statistically quantifies
how far a particular performance value is from the mean of a group of performance
values. It is expressed in terms of standard deviations from the mean, for instance,
performance values within one standard-deviation range of the mean may be considered
average, while performances above or below that range may be regarded as above or below
average. Z-score method does not assign a ranking label for a specific range of standard
deviations that lacks a corresponding performance value. However, Z-score method always
assigns the first and the last ranking labels since the performance value intervals using
Z-score method are derived from the maximum and minimum t scores rather than the
upper and lower bounds of the t scores. Thus, Z-score method only partially
accommodates CPD.

Importantly because norm-referenced scheme has no predefined criteria agreed upon
by all stakeholders, using it for CPD is susceptible to bias. To address this ethical problem,
this study firstly formalizes CPD and subsequently proposes the set of requirements to
attain unbiasedness in norm-referenced CPD. The requirements are consequently utilized
to derive a novelly conditional unbiasedness metric for measuring the effectiveness of
norm-referenced CPD methods. Furthermore, this article proposes CPD methods
leveraging heuristic, machine learning, and multi-modal approaches. By employing the
conditional unbiasedness metric, the proposed approaches are compared across various
real-world data sets acquired from target domains. In summary, the contributions of this
article are eight folds:

. We propose the formal definition of CPD, as presented in Eq. (1), to establish a clear and
systematic basis for introducing novel algorithms and performance metrics under a
specific condition where a set of performance-ranking labels assigned is the proper
subset of a set of assignable performance-ranking labels.

. We introduce original unbiasedness requirements for norm-referenced CPD,
establishing the foundation for novel performance metrics and the development of new
norm-referenced CPD methods.
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. We propose four distinct methods for norm-referenced CPD that are exclusively based
on heuristic, machine learning, and multi-modal approaches.

. We propose a performance metric for quantifying the degrees of conditional
unbiasedness that are attained by norm-referenced CPD approaches.

. We originally report and discuss the findings of unbiasedness comparison among the
proposed methods and a conventional one.

While this article focuses on norm-referenced CPD in the context of human
performance evaluation (e.g., employee and student assessments), the proposed methods
rely on no domain-specific assumption making it adaptable to a wide range of applications
in other domains including healthcare (e.g., discretizing patient health metrics like body
mass index (BMI) or blood pressure into rank-based categories for population health
studies or risk stratification), finance (e.g., ranking financial portfolios or credit scores into
percentile-based tiers for benchmarking and risk assessment), sports analytics (e.g.,
classifying athlete performance metrics like speed or accuracy into skill levels for talent
scouting or training optimization), and environmental science (e.g., categorizing pollution
levels or climate data into severity bands for comparative analysis across regions).

The rest of this article is organized as follows: Related Work explores related work.
Definition of Conditional Performance Discretization section formalizes the definition of
CPD. Section Conditional Unbiasedness Requirements and Metric for Norm-Referenced
CPD provides conditional unbiasedness requirements and a metric for CPD.
Norm-Referenced CPD Methodology section describes four novel norm-referenced CPD
methods. Section Evaluation evaluates the proposed methods against various data sets and
a conventional method. Section Finding and Discussion discusses findings. Last but not
least, section Conclusion concludes important findings and states future research.

Related work
In the broader context of various domains, existing discretization methods (Baron &
Stańczyk, 2020; García et al., 2013; Dash, Paramguru & Dash, 2011) were designed to
transform continuous data into nominal data either during the preprocessing or
postprocessing stages of data mining. These methods are categorized as supervised or
unsupervised schemes. Supervised algorithms incorporate class information, often in the
form of entropy, to determine cut-points to partition data space. In contrast, unsupervised
algorithms do not consider class information. Instead, they may evenly divide the data
range into a specified number of bins (namely equal-width method) or allocate an equal
number of continuous values into each bin (namely equal-frequency-binning method).
Yang & Webb (2008) proposed unsupervised discretization methods that aimed to reduce
classification bias or error. However, all of existing discretization methods predominantly
prioritized the performance enhancement of general data classification rather than
ensuring unbiasedness in the context of human performance.

Extensive research in human resource management evaluated personnel’s overall
performance by classifying various performance factors into a set of predefined
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performance ranking labels (e.g., excellent, good, regular, and insufficient). The
classification tasks leveraged machine-learning classifiers (e.g., decision tree, k-nearest
neighbors, support vector machine, naive bayes, and artificial neural network) and/or
fuzzy logic using class labels created via either norm- or criterion-referenced methods.
However, these efforts primarily focused on the discretization of multiple raw performance
values rather than single inclusive performance values. Furthermore, some of these studies
were conducted without addressing bias issues such as Sharma & Goyal (2015), Pan (2021),
and Ahned & Sultana (2013) whereas others were aware of biasedness at the level of either
human performance indicators or algorithmic operations such as Nayem & Uddin (2024)
and De Oliveira Góes & De Oliveira (2020). Apart from the classification-based
discretization, there is limited research (Dang, Truong & Huynh, 2021; Huang & Wang,
2022; Prasad, Choudhary & Ankayarkanni, 2020) employing clustering techniques to
identify overall similarities among multiple raw performance factors and align them with
performance ranking labels to gain insights into personnel performances and enhance
human resource management. Unfortunately, these clustering-based discretization
approaches overlooked the aspect of unbiasedness. Furthermore, these research endeavors
both classification-based and clustering-based entirely engaged UPD instead of CPD.

Prior norm-referenced performance discretization methods are primarily utilized in the
field of education, particularly in scenarios where exams cannot comprehensively assess all
learning topics due to time constraints and limited grading resources. In such cases,
norm-referenced approaches are preferred over criterion-referenced schemes
(Banditwattanawong & Masdisornchote, 2021). These methods include Arora & Badal
(2013), Borgavakar & Shrivastava (2017), Parveen, Alphones & Naz (2017), Shankar et al.
(2016), Xi (2015), Iqbal et al. (2019), Ramen & Joachims (2014), and Bai & Chen (2006).
They mostly utilized K-means clustering as reviewed in previous work
(Banditwattanawong, Jankasem & Masdisornchote, 2023). Recently, Omar, Alzahrani &
Zohdy (2020) leveraged K-means and the elbow to partition students’ performance data,
consisting of course name, course grade, and cumulative GPA, into groups for developing
improvement plans. Pamungkas, Dewi & Putri (2024) also utilized K-means and the elbow
method to cluster students’ GPAs, credits taken, and the number of poor grade symbols
into three groups: high achievers, average performance, and needs improvement, for
developing challenging or remedial programs. In previous studies (Banditwattanawong &
Masdisornchote, 2020a, 2020b, 2021), we proposed a heuristic approach for
norm-referenced grading and were the first to demonstrate the application of K-means and
partitioning around medoids (PAM) for this purpose. We evaluated the grading quality of
the heuristic, Z-score, K-means, and PAM based on Davies-Bouldin index without the
notion of fairness. Our seminal article (Banditwattanawong, Jankasem & Masdisornchote,
2023) proposed a norm-referenced achievement grading method that focused on grading
fairness. This approach is, however, limited to UPD. In summary, none of these
norm-referenced educational assessments aimed for CPD unbiasedness, and major
changes must be applied to these studies to achieve CPD.

Table 1 summarizes these related works and their shortage in addressing our research
problem of unbiasedness-centric CPD.
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Definition of conditional performance discretization
It is crucial to establish a rigorous foundation for proposing CPD algorithms and
evaluating their performance. This section formally defines CPD that is applicable to both
norm-referenced and criterion-referenced performance discretization schemes. Let P be a
set of one-dimensional performance values, L be a set of assignable performance-ranking
labels, La be a set of performance-ranking labels assigned to P, and fCPD() denote a CPD

Table 1 Summary of related work.

Related work Key contribution Aware of
fairness

Support for
norm-referenced CPD

Baron & Stańczyk (2020) Comparative evaluation of ranking-based discretization methods No No

García et al. (2013) Comparative evaluation of supervised and unsupervised
discretization methods

No No

Dash, Paramguru & Dash (2011) Comparative analysis of discretization methods No No

Yang & Webb (2008) Unsupervised machine-learning discretization methods No No

Sharma & Goyal (2015) Machine-learning models for predicting employee performance No No

Pan (2021) Classification models for human performance based on a
criterion-referenced scheme

No No

Ahned & Sultana (2013) A fuzzy logic approach for employee performance evaluation No No

Nayem & Uddin (2024) Machine-learning models for predicting employee performance Yes No

De Oliveira Góes & De Oliveira (2020) A fuzzy-logic and machine-learning based approach for human
resource performance evaluation

Yes No

Dang, Truong & Huynh (2021) Fuzzy clustering
algorithms for human resource grouping

No No

Huang & Wang (2022) A human-resource management system for clustering employee
talents

No No

Prasad, Choudhary & Ankayarkanni
(2020)

An elbow-based K-means model for employee performance
evaluation

No No

Arora & Badal (2013) A K-means-based system for student performance evaluation No No

Borgavakar & Shrivastava (2017) K-means models for student performance evaluation using the sets
of various attributes

No No

Parveen, Alphones & Naz (2017)

Shankar et al. (2016)

Xi (2015)

Iqbal et al. (2019) A Restricted-Boltzmann-Machine model for predicting student
grades

No No

Ramen & Joachims (2014) Probabilistic models for student peer grading No No

Omar, Alzahrani & Zohdy (2020) Elbow-based K-means models for student performance evaluation No No

Pamungkas, Dewi & Putri (2024)

Banditwattanawong & Masdisornchote
(2020a)

Heuristic approaches for the norm-referenced achievement grading
of learners

No No

Banditwattanawong & Masdisornchote
(2020b)

Banditwattanawong & Masdisornchote
(2021)

Banditwattanawong, Jankasem &
Masdisornchote (2023)

A hybrid machine-learning and heuristic method for
norm-referenced achievement grading

Yes No
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function that belongs to either norm-referenced or criterion-referenced scheme, CPD
implements Eq. (1). Note that La ⊂ L indicates that La is a proper subset of L.

l 2 La  fCPDðp 2 PÞ
such that La � L: (1)

This definition will be empirically exemplified through the following section.

Conditional unbiasedness requirements and metric for
norm-referenced CPD
Intuitively, the norm-referenced CPD of descendingly-sorted performance values will
achieve exact unbiasedness if three following requirements are completely fulfilled. Let
PRL represent a linguistic performance-ranking label and PVI denote a performance-value
interval, defined as a difference between the maximum and minimum performance values
associated with the same PRL.

. Requirement 1: Every gap between adjacent performance values associated with two
unique PRLs, including a gap between the top performance value and its upper bound, as
well as a gap between the worst performance value and its lower bound that exceeds the
largest PVI preserves a certain unique PRL from being assigned. This realizes the CPD
property specified by Eq. (1).

. Requirement 2: Every gap between contiguous performance-value boundaries associated
with two unique PRLs is maximized. This prevents situations where any two closely
situated performance values receive disparate PRLs, which may signify bias in a CPD
process.

. Requirement 3: All PVIs are uniform. This ensures that all assigned PRLs have the
comparable chances of being assigned.

Conditional unbiasedness is achieved when the CPD process fairly assigns PRLs without
favoring specific intervals of performance values. This is mathematically formalized
through Eq. (2). These three requirements ensure conditional unbiasedness in
Norm-Referenced CPD by preventing artificial PRL assignment in sparse performance
regions (Requirement 1), ensuring that performance value gaps between PRLs do not
create unfair distinctions (Requirement 2), and distributing PRLs evenly across
performance intervals (Requirement 3). Requirements 2 and 3 are also common for UPD
and were demonstrated in Banditwattanawong, Jankasem & Masdisornchote (2023).

We further clarify Requirement 1 via a simplified example presented in Table 2. In this
example, a vector of 14 performance values is mapped to a vector of PRLs <A, B, C, D, E, F,
G, H, I> by using a possible norm-referenced CPD method (A0). At an initial execution
stage of A0, the results contain the same number of PVIs as the unique PRLs and include
the gaps (four instances of 14 in bold) larger than the largest PVI of 5. This indicates that
Requirement 1 has not yet been satisfied, thus requiring further adjustment of PRLs. To
fulfill Requirement 1, specific unique PRLs must be sacrificed for these gaps by being
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excluded from assignment. In the final execution stage, A0 not only excludes A from
being assigned due to the first gap of 14 but also reduces the number of PVIs by four
causing the performance values 96, 92, 86, and 82 to be embraced into the same PVI
associated with PRL B. Subsequently, the second gap of 14 between 82 and 77 excludes the
associated PRL C from being assigned, while 77, 63, and 58 are grouped into the same
PVI associated with a following PRL D. Likewise, the third gap of 14, following E,
excludes F from assignment, and the last gap of 14, following H, excludes I from
assignment. Consequently, no gap in the final stage exceeds the updated largest PVI of 19,
thereby satisfying Requirement 1.

When applying norm-referenced CPD to real-world human performances, each of
these requirements is often partially met. Hence, quantifying the attained degree of
conditional unbiasedness in the deployment of norm-referenced CPD becomes beneficial
for identifying the optimal CPD approach. Conditional unbiasedness metric Ω′ that
measures the extent of conditional unbiasedness exhibiting in the outputs of a
norm-referenced CPD approach can be figured out via Eq. (2).Ω′ is derived as the product
of metrics,Ω1,Ω2, andΩ3, measuring the degrees of accomplishment for the Requirements
1 to 3, respectively. A higher Ω′ value indicates that the CPD process has minimized
potential biases, thereby ensuring a robust and equitable evaluation system.

Table 2 Demonstration of requirement one satisfaction. Bolding indicates the gaps (four instances of 14).

Performance
value

Gap from previous
performance value

Initial stage Final stage

Initial PRL
assigned by A0

Gap between unique PRLs
and both bounds

PVI Final PRL
assigned by A0

Gap between unique PRLs
and both bounds

PVI

Upper
bound

110 – – – – – – –

Sorted
values

96 14 A 14 4 B 14 14

92 4 A – B –

86 6 B 6 4 B –

82 4 B – B –

77 14 C 14 0 D 14 19

63 6 D 6 5 D –

58 4 D – D –

52 6 E 6 4 E 6 4

48 4 E – E –

43 14 F 14 0 G 14 16

27 6 G 6 0 G –

20 7 H 7 0 H 7 6

15 5 I 5 1 H –

14 1 I – H –

Lower
bound

0 14 – 14 – – 14 –
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�0 ¼ �1 � �2 � �3

�1 ¼ 1� � � hj j
�

if � � 1

1; otherwise

8<
:

�2 ¼
PN�1

i¼1 di �
PN�1

i¼1 D
minð Þ
iPN�1

i¼1 D
maxð Þ
i � PN�1

i¼1 D
minð Þ
i

if N � 3

1; otherwise

8><
>:

�3 ¼
1

1þ r
if N � 2

1; otherwise

8<
:

(2)

where N denotes the number of unique PRLs assigned to performance values, δi denotes a
gap between the lower-bound performance-value of the ith PRL and the upper-bound
performance-value of the consecutive (i+1)th PRL (assuming performance values are
sorted in descending order corresponding to that of the PRLs), D minð Þ

i denotes the ith

narrowest gap between any adjacent performance values, D maxð Þ
i denotes the ith widest gap

between any adjacent performance values, σ denotes the standard deviation of the PVIs of
all assigned unique PRLs, θ denotes the number of unassigned unique PRLs, andΘ denotes
the number of both δi and a gap (γu) between the top performance value and its upper
bound as well as a gap (γl) between the worst performance value and its lower bound that
are larger than a PVI (denoted by m Ið Þ

i ), which is widest and associated with a unique PRL.
The value ranges of Ω1 is [0.0, 1.0], while Ω2, Ω3 have the range of (0.0, 1.0].

The rationale behind the calculation of Ω′, which is [0.0, 1.0], is as follows. Since Θ
notates the count of PRLs that ought to remain unassigned, θ /Θ in Ω1 indicates the
amount of CPD efficiency in satisfying Requirement 1 when assigning PRLs. If Ω1 equals
1.0,

PN�1
i¼1 di inΩ2 reaches its upper bound,

PN�1
i¼1 D

maxð Þ
i ; (i.e., Requirement 2 is met), and

σ in Ω3 is 0 (i.e., Requirement 3 is satisfied), Ω′ will be 1.0 indicating none of conditional
biasedness. In contrast, as the term θ /Θ approaches 0, and/or

PN�1
i¼1 di approaches its

lower bound,
PN�1

i¼1 D
minð Þ
i , and/or σ approaches ∞, Ω′ will approach 0 indicating the low

degree of conditional unbiasedness. Thus, a high value of Ω′ signifies a greater extent of
conditional unbiasedness.

For clarification, Table 3 demonstrates the application of Eq. (2) through a vector of 30
descendingly-sorted performance values, a vector of assignable PRLs in a descendingly
qualitative order <A, B, C, D, F>, and two possible norm-referenced CPD methods A1 and
A2. Since A1 and A2 assign 4 and 3 PRLs, respectively, to different PVIs, the Ω′ values of
CPD outputs delivered by A1 and A2 where N = 4 and 3, respectively, are calculated as
follows:

A1 : �0 ¼ 1� 2� 1j j
2

� �
� 10 � 0ð Þ

10 � 0ð Þ �
1

1þ 5:07ð Þ ¼ 0:08

A2 : �0 ¼ 1� 2� 2j j
2

� �
� 6 � 0ð Þ

7 � 0ð Þ �
1

1þ 2:89ð Þ ¼ 0:22:

The reason for A2 exhibiting a higher degree of conditional unbiasedness compared to
A1 is that A2 more effectively satisfies Requirements 1 and 3.
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Norm-referenced CPD methodology
This section proposes four unbiasedness-centric methods for norm-referenced CPD:
widest-gap-first CPD method (WGF-CPD), K-means CPD method (K-CPD),
Partitioning-Around-Medoids CPD method (PAM-CPD), and multi-modal CPD method
(M-CPD).

Table 3 Demonstration of Ω′ calculation of two possible CPD algorithms.

Performance
value

Gap from previous
performance value

A1 A2

PRL assigned
by A1

γu, δi,
γl

m Ið Þ
i

PRL assigned
by A2

γu, δi,
γl

m Ið Þ
i

Upper
bound

100 – – – – – – –

Sorted
values

82 18 A 18 2 B 18 7

80 2 A – B –

76 4 B 4 1 B –

75 1 B – B –

72 3 C 3 7 C 3 7

70 2 C – C –

69 1 C – C –

69 0 C – C –

68 1 C – C –

68 0 C – C –

67 1 C – C –

65 2 C – C –

65 0 C – C –

62 3 D 3 12 D 3 12

61 1 D – D –

59 1 D – D –

58 1 D – D –

57 1 D – D –

57 0 D – D –

57 0 D – D –

56 1 D – D –

56 0 D – D –

55 1 D – D –

54 1 D – D –

53 1 D – D –

52 1 D – D –

52 0 D – D –

51 1 D – D –

50 1 D – D –

50 0 D – D –

Lower
bound

0 50 – 50 – – 50 –
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Widest-gap-first CPD method
Starting with all performance values, this method employs a heuristic approach, namely
widest-gap-first, to identify the largest gaps (i.e., the widest δi) for categorizing
performance values when assigning PRLs. The method iteratively reduces the number of
PRLs assigned to ensure compliance with CPD requirements. Performance values falling
into distinct categories are assigned different PRLs. WGF-CPD is simple and interpretable
compared to the other CPD methods.

The method is outlined in Algorithm 1. Line 1 calculates gaps between every pair
of adjacent performance values and select only (the total number of unique PRLs – 1) widest
gaps. If there are multiple identical widest gaps, the one leading to more uniform PVIs
(minimizing σ in Eq. (2)) will be selected. In line 2, heuristicPD() discretizes performance
values based on the widest-gap-first heuristic approach by initially assigning all unique PRLs
to all performance values grouped according to the |l|−1 widest gaps. Line 3 determines
PVIs associated with each unique PRL. Line 4 calculates gaps γu, γl, and δi=1 ..|l|−1. Line 5
counts the number of gaps from Line 4 that their gap sizes equal or exceed the largest PVI
from Line 3. Line 6 sets the number of unassigned PRLs initially to zero. Line 7 calculates
Eq. (2). Line 8 sets the positive-integer index j (representing the number of sacrificed or
unassigned PRLs) to 1. Line 9 iterates lines 10 to 17 only if the condition j ≤ Θ holds true.
Each iteration sacrifices a unique PRL for each of the widest gaps equaling or exceeding the
largest PVI by incrementing j by 1 from 1 to Θ. Lines 10 to 17 execute similar operations to
lines 1 to 8, but constrained to the |l|-1−j widest gaps. Each iteration implies that there is a
gap in g wider than maxElement(ν(I)) causing heuristicPD() in line 11, which is the
overloading variant of heuristicPD() in line 2, to sacrifice a respective PRL in l for some gap
not only in g(max) but also γu and γl exceeding the widest PVI and totally assigns |l|−j PRLs in
each iteration. (The process of excluding PRLs from assignment has been demonstrated
through Table 2.) Notice that the iteration might terminate when Θ is still greater than 0
meaning that Requirement 1 fulfillment is only partial. Line 15 updates θ value to be used
for Ω′ calculation in the next iteration. Line 17 increases j by 1. Line 18 identifies the index
value of k for which �0k¼0::j�1 is maximized. Line 19 returns the output vector of PRL
instances, delivering the maximum �0k, that are aligned with each performance value in the
input ν one by one. In fact, if Θ in line 5 equals 0, the while loop will be bypassed causing
Algorithm 1 to function as a UPD method.

The practical cost-effectiveness of Algorithm 1 is analyzed in terms of worst-case time
complexity as follows. Let n and N be the numbers of performance values (i.e., |v|) and
unique PVLs (i.e., |l|), respectively. To sort input v and l takes nlog2n and Nlog2N,
respectively. Line 1 takes (N-1)log2n. Line 2 takes n. Lines 3–5 identically take n. Line 7 is
3N+nlog2n to figure out all parameters and calculate Eq. (1). Line 9 iterates at most N+1
rounds (as Θ is bounded by |g|, which is at most N+1) of lines 10–17, which are equivalent
to lines 2–8. Line18 takes N+1. Line 19 takes n. Therefore, WGF-CPD algorithm is O
(nlog2n + Nlog2N + (N−1)log2n + n + 3n + 3N+nlog2n + (N+1)((N−1)log2n + n + 3n + 3N
+ nlog2n) + N+1+n) that is O(nlog2n) as N << n.
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K-means CPD method
This method engages K-means (Witten & Frank, 2016) for partitioning performance
values into a predefined number, K, of clusters, each represents a unique PRL. Unlike
supervised methods, this approach does not use labeled data but instead minimizes the

Algorithm 1 Widest-gap-first CPD algorithm.

Algorithm WGF-CPD

Input

ν : vector of performance values in descending order

U : upper-bound performance value

L : lower-bound performance value

l : vector of unique PRLs in a descendingly qualitative order

Output

l(o) : vector of PRL instances that matches ν both size and order

Local variable

g(max) : vector of widest performance-value gaps

g : vector of full-range performance-value gaps <γu, δi=1..|l|-1, γl>

ν(I) : vector of PVIs

l oð Þj : jth vector of PRL instances that matches ν in both size and order

�0j : jth Ω′ value

Begin

1. g(max)
← findWidestGaps(v, |l| - 1);

2. l oð Þj¼0 ← heuristicPD(ν, l, g(max));

3. ν(I) ← getPVIs(l oð Þj¼0, ν);
4. g ← getPerformanceValueGaps(ν, l oð Þj¼0, U, L);
5. Θ ← |{m∈g | m ≥ maxElement(ν(I))}|;

6. θ ← 0;

7. �0j¼0 ← getConditionalUnbiasedness(ν, l oð Þj¼0, U, L, θ, Θ);
8. j ← 1;

9. while j ≤ Θ

10. g(max)
← findWidestGaps(ν, |l| – 1 – j);

11. l oð Þj ← heuristicPD(ν, l, g(max), γu ∈ g, γl ∈ g);

12. ν(I) ← getPVIs(l oð Þj , ν);

13. g ← getPerformanceValueGaps(ν, l oð Þj , U, L);

14. Θ ← |{m∈g | m ≥ maxElement(ν(I))}|;

15. θ ← j;

16. �0j ← getConditionalUnbiasedness(ν, l oð Þj , U, L, θ, Θ);

17. j ← j+1;

18. k ← argmaxk(�
0
k¼0::j�1);

19. l(o) ← l oð Þk ;

End
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variance within clusters to optimize grouping. In the context of CPD, the number of
clusters is fewer than the number of assignable unique PRLs. The method iteratively
adjusts clusters to align with performance gaps and ensures compliance with the CPD
requirements, particularly focusing on equalizing PVIs while maintaining the widest-gap
constraints. This ensures unbiased distribution, as measured by Ω′.

In specific, K-means method minimizes an objective function
PK

j¼1
Pnj

i¼1 xi � cj
�� �� where

nj is the number of performance values in cluster j, xi is a performance value in j with a
centroid cj, and |xi − cj| is Euclidean distance. K-CPD method invokes K-means more than
once to produce CPD results and the best one with the highest Ω′ is finally returned as
showed in Algorithm 2. Several lines of code are the identical to those in Algorithm 1 and
have been explained with the exception of the followings. In line 1, KmeansPD() performs
performance discretization by assigning all unique PRLs to all performance values grouped
by using K-means method into |l| clusters. During each iteration, the overloading function
KmeansPD() will not assign a unique PRL corresponding to a performance value gap
betweenU and L equal to or wider thanmaxElement(ν(I)). As long as the condition j≤Θ in
line 8 is not evaluated to false, the algorithm continues to invoke K-means algorithm to
re-cluster the performance values into |l|−j clusters. In each iteration of the while-loop, the
resulting PRL-instance vector l contains a unique set of PRLs or clusters that differ from
those in other iterations and is assumed to be stored. Finally, in lines 16–17, the K-CPD
algorithm returns the vector of PRL instances that achieves the highest conditional
unbiasedness.

The time complexity of Algorithm 2 is analyzed as follows. To sort input v and l takes
nlog2n and Nlog2N, respectively. Line 1 takes cNn where N is equivalent to the number of
clusters and hyper parameter c is the bound number of internal iterations in each complete
K-means execution. Lines 2–4 identically take n. Line 6 is 3N+nlog2n. Line 8 iterates at
most N+1 rounds of lines 9–15, which are equivalent to lines 1–7. Line 16 takes N+1. Line
17 takes n. Therefore, K-CPD algorithm is O(nlog2n) as N << n. However, for large data
sets, K-CPD becomes sensitive to the initial placement of centroids, potentially leading to
inconsistent results across different runs. This issue can be mitigated by replacing random
initialization with more reliable techniques, such as K-Means++.

Partitioning-around-medoids CPD method
This method adapts K-CPD by replacing K-means with PAM (Kaufmann & Rousseeuw,
1987), which enhances robustness to outliers. PAM is different from K-means in how it
selects cluster centers, as PAM choose actual data points (medoids) as cluster centers
instead of means. This makes PAM more robust to outliers, whereas K-means is sensitive
to extreme values that can distort cluster assignments. However, this robustness comes at a
computational cost, as PAM has a higher complexity of O(n2N), making it slower than
K-means, which operates at O(cNn). Unlike K-means, which can produce different results
due to random initialization, PAM provides more stable clustering outcomes. Thus, PAM
is preferred for small datasets, while K-means is better suited for large-scale clustering
tasks requiring efficiency.

Banditwattanawong and Masdisornchote (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2804 12/33

http://dx.doi.org/10.7717/peerj-cs.2804
https://peerj.com/computer-science/


Algorithm 3 details PAM-CPDmethod. The algorithm differs from Algorithm 2 in lines
1 and 9 substituting PAM_PD() for KmeanPD(). PAM_PD() discretizes the performance
vector v by employing PAM method into |l| and |l|−j PRLs or clusters. Each while loop
generates at most Θ PVL vectors. The algorithm returns a PVL vector with the maximum
Ω′.

The time complexity of Algorithm 3 can be derived by replacing cNn with n2N. This
makes PAM-CPD, which is O(n2), still tractable.

Algorithm 2 K-means CPD algorithm.

Algorithm K-CPD

Input

ν : vector of performance values in descending order

U : upper-bound performance value

L : lower-bound performance value

l : vector of unique PRLs in a descendingly qualitative order

Output

l(o) : vector of PRL instances that matches ν both size and order

Local variable

g : vector of full-range performance-value gaps <γu, δi=1..|l|-1, γl>

ν(I) : vector of PVIs

l oð Þj : jth vector of PRL instances that matches ν in both size and order

�0j : jth Ω′ value

Begin

1. l oð Þj¼0 ← KmeansPD(ν, l, |l|);

2. ν(I) ← getPVIs(l oð Þj¼0, ν);
3. g ← getPerformanceValueGaps(ν, l oð Þj¼0, U, L);
4. Θ ← |{m∈g | m ≥ maxElement(ν(I))}|;

5. θ ← 0;

6. �0j¼0 ← getConditionalUnbiasedness(ν, l oð Þj¼0, U, L, θ, Θ);
7. j ← 1;

8. while j ≤ Θ

9. l oð Þj ← KmeansPD(ν, l, lj j � j, U, L);

10. ν(I) ← getPVIs(l oð Þj , ν);

11. g ← getPerformanceValueGaps(ν, l oð Þj , U, L);

12. Θ ← |{m∈g | m ≥ maxElement(ν(I))}|;

13. θ ← j;

14. �0j ← getConditionalUnbiasedness(ν, l oð Þj , U, L, θ, Θ);

15. j ← j+1;

16. k ← argmaxk(�
0
k¼0::j�1);

17. l(o) ← l oð Þk ;

End
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Multi-modal CPD method
M-CPD method leverages both WGF-CPD, K-CPD, and PAM-CPD methods to process
the same set of inputs and return the results of either constituent method with the highest
Ω′. M-CPD method takes the number of assignable unique PRLs to specify not only the
initial number of clusters determined by K-CPD and PAM-CPD methods but also the
initial number of PVIs into which WGF-CPD method divides performance values.
M-CPD method employs conditional-unbiasedness maximization as its decision function,

Algorithm 3 PAM CPD algorithm.

Algorithm PAM-CPD

Input

ν : vector of performance values in descending order

U : upper-bound performance value

L : lower-bound performance value

l : vector of unique PRLs in a descendingly qualitative order

Output

l(o) : vector of PRL instances that matches ν in both size and order

Local variable

g : vector of full-range performance-value gaps <γu, δi=1..|l|-1, γl>

ν(I) : vector of PVIs

l oð Þj : jth vector of PRL instances that matches ν both size and element order

�0j : jth Ω′ value

Begin

1. l oð Þj¼0 ← PAM_PD(ν, l, |l|);

2. ν(I) ← getPVIs(l oð Þj¼0, ν);
3. g ← getPerformanceValueGaps(ν, l oð Þj¼0, U, L);
4. Θ ← |{m∈g | m ≥ maxElement(ν(I))}|;

5. θ ← 0;

6. �0j¼0 ← getConditionalUnbiasedness(ν, l oð Þj¼0, U, L, θ, Θ);
7. j ← 1;

8. while j ≤ Θ

9. l oð Þj ← PAM_PD(ν, l, lj j � j, U, L);

10. ν(I) ← getPVIs(l oð Þj , ν);

11. g ← getPerformanceValueGaps(ν, l oð Þj , U, L);

12. Θ ← |{m∈g | m ≥ maxElement(ν(I))}|;

13. θ ← j;

14. �0j ← getConditionalUnbiasedness(ν, l oð Þj , U, L, θ, Θ);

15. j ← j+1;

16. k ← argmaxk(�
0
k¼0::j�1);

17. l(o) ← l oð Þk ;

End
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which is grounded in Ω′ to quantify the degree to which a norm-referenced CPD process
satisfies the three core requirements justified below. Particularly, the decision function
evaluates the results of WGF-CPD, K-CPD, and PAM-CPD, and selects the one with the
highest Ω′, ensuring optimal conditional unbiasedness.

. Requirement 1: Unassigned PRLs are maximized for gaps larger than or equal to the
widest PVI, ensuring no bias arises from arbitrary assignments in sparsely populated
regions.

. Requirement 2: Gaps between assigned PRLs are maximized, preventing closely spaced
performance values from receiving different PRLs, which could introduce unfair
distinctions.

. Requirement 3: Uniformity of PVIs is maintained to equalize the likelihood of PRLs
being assigned across the performance spectrum.

Algorithm 4 provides the details of M-CPD method. Lines 1 to 3 call WGF-CPD, K-
CPD, and PAM-CPD algorithms, respectively, to process input performance values and
PRLs. In line 4, the algorithm implements the maximization of its decision function to
identify the best CPD result among a pair generated by the constituent algorithms. Note
that getConditionalUnbiasedness() in line 4 overloads the function
getConditionalUnbiasedness() in Algorithms 1, 2, and 3 by calculating θ andΘmerely from
the input parameters ν, l oð Þj , U, and L.

The worst-case time complexity of Algorithm 4 is as follows. To sort input v and l takes
nlog2n and Nlog2N, respectively. Lines 1 and 2 equally takes nlog2n. Line 3 takes n

2. Line 4
is 2(3N+nlog2n). Therefore, M-CPD algorithm totally takes 3nlog2n + Nlog2N + n2 + 2(3N
+nlog2n) equaling O(n2).

Algorithm 4 Unbiasedness-centric multi-modal CPD algorithm.

Algorithm M-CPD

Input

ν : vector of performance values in descending order

U : upper-bound performance value

L : lower-bound performance value

l : vector of unique PRLs in a descendingly qualitative order

Output

l(o) : vector of PRL instances that matches ν in both size and order

Begin

1) l oð Þ1 ← WGF-CPD(ν, l, U, L);

2) l oð Þ2 ← K-CPD(ν, l, U, L);

3) l oð Þ3 ← PAM-CPD(ν, l, U, L);

4) l(o) ← argmax
l oð Þj 2 l oð Þ1 ;l oð Þ2 ;l oð Þ3f g getConditionalUnbiasedness(ν, l

oð Þ
j , U, L);

End
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Evaluation
The proposed methods are assessed by using open data sets and analyzed in terms of
conditional unbiasedness as outlined below.

Data set and preprocessing
Multiple data sets from human-performance evaluation domains, each of which
consists of one or more fields, are preprocessed to derive stakeholder-interpretable
and one-dimentional performance values as follows. The statistical characteristics of each
data set are described via a vector of <maximum performance value, minimum
performance value, performance value mean, standard deviation, distribution
skewness>, providing a comprehensive summary of the data’s central tendency, variability,
and shape.

The first data set, entitled EMP1, concerns employee evaluation for promotion
consideration. To derive EMP1, the following fields were selected from the raw data set
(Zaman, 2022) and max–min normalized into a range of 0.00 and 1.00: previous year
rating (between 1 and 5), length of service in years, won awards (1 for won, 0 otherwise),
number of trainings (ranging from 1 to 10), and average training score (between 0 and
100). Subsequently, the normalized values were summed to obtain individual performance
values ranging from 0.00 to 5.00. The sampled number of employees evaluated is 100.
These 100 preprocessed performance values will be then discretized conditionally into
three promotional levels as suggested by the raw data set’s meta data: executive (denoted by
A), higher-qualified professional (B), and non-qualified promotion (C). The statistical
characteristics of this data set are <3.00, 0.79, 1.97, 0.46, −0.84>.

The second data set, namely EMP2, pertains to employee performance rating correlated
with salary increases. To obtain EMP2, the raw data set (Kumar, 2022) including the field
of percentage salary hikes was filtered in randomly only 60 records of employees. The
preprocessed data will be discretized conditionally into performance ratings ranging from
1 to 4. A lower rating corresponds to a greater salary increase. The statistical characteristics
of this data set are <24, 11, 15.66, 3.64, 0.25>.

The third data set, named STD1, involves the evaluation of performance among higher
education students. In the raw data set (Yilmaz & Sekeroglu, 2022), a field representing the
1 to 5 ratings of cumulative grade point average (CGPA): 1 for < 2.00 CGPA, 2 for 2.00–
2.49 CGPA, 3 for 2.50–2.99 CGPA, 4 for 3.00–3.49 CGPA, and 5 for above 3.49 CGPA.
This field was sampled into 50 records and transformed from interval ratings to random
CGPAs by applying randomization. These preprocessed CGPA values are to be discretized
conditionally into grade symbols: AA, AB, BB, BC, CC, CD, DD, and Fail. The statistical
characteristics of STD1 are <3.46, 0.18, 2.45, 0.86, −1.00>.

The final dataset, STD2, represents student performance in exams. It was derived by
weighting math, reading, and writing scores from the raw dataset (Chauhan, 2023), where
each subject has a full score of 100. A subset of 40 samples was selected for conditional
discretization into five grade symbols (A, B, C, D, and F). The statistical characteristics of
STD2 are <90, 23, 53.28, 22.30, 0.17>.
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Experimental setup
The experiments were conducted in the following steps to evaluate the proposed
norm-referenced CPD methods, WGF-CPD, K-CPD, PAM-CPD, and M-CPD. First, each
preprocessed dataset was conditionally discretized separately using all proposed methods.
The algorithmic processing is also concisely clarified. Subsequently, Ω′ value was
computed for each combination of method and data set to quantify the
conditional-unbiasedness performance of each method. Finally, the results are evaluated
by comparison across the methods.

CPD result
The CPD results for each proposed method are presented via each complete data set in
Table 4 onward. The conditional unbiasedness degrees are measured to observe the
contributions of the constituent methods to the final results delivered by M-CPD method.

In Table 4, EMP1 data set is processed independently by WGF-CPD, K-CPD, and
PAM-CPD methods as well as baseline Z-score method as follows.

Initially, WGF-CPD method discretizes the performance values into three PRLs A, B,
and C, each of which is associated with the performance values [3.00], [2.80–0.91], and
[0.79], respectively, resulting in PVIs of <0.00, 1.89, 0.00> (not showed in Table 4).
However, there remains the gap γu of 2.00 wider than the maximum PVI (1.89) and
preceding the maximum performance value, thus PRL A should have been sacrificed. As a
result, WGF-CPD re-discretizes the performance values into only 2 PRLs, B and C, as
showed in Table 4. Notably, no gap wider than the maximum PVI (2.01) remains, leading
to the completion of the method.

K-CPD method begins by grouping the performance values into 3 clusters: [3.00, 2.22],
[2.20, 1.70], and [1.65, 0.79], associated with PRLs A, B, and C, respectively (not shown in
Table 4). Since all PVIs <0.78, 0.50, 0.86> are smaller than γu, K-CPD re-groups the
performance values into 2 clusters, [3.00, 1.77] and [1.70, 0.79], associated with B and C,
respectively, as demonstrated in Table 4. However, the widest PVI of 1.23 still remains
smaller than γu although K-CPD terminates since the condition in line 8 of Algorithm 2
evaluates to false (i.e., the number of excluded PRLs reached Θ).

PAM-CPD method initially groups the performance values into 3 clusters: [3.00, 1.04],
[0.94, 0.91], and [0.79, 0.79], associated with PRLs A, B, and C, respectively, (not showed in
Table 4). Since all PVIs <1.96, 0.03, 0.00> are smaller than γu, PAM-CPD re-groups the
performance values into two clusters, [3.00, 0.91] and [0.79, 0.79], associated with B and C,
respectively, as demonstrated in Table 4. The widest PVI of 2.09 is larger than γu, causing
Θ to become 0 and terminating the while loop in Algorithm 3.

The CPD results in Table 4 produced by WGF-CPD, K-CPD, PAM-CPD, and Z-score
methods exhibit different degrees of Ω′ as calculated below based on Eq. (2) with N = 2.
Greater Ω′ value indicates that K-CPD offers higher degree of conditional unbiasedness.
Consequently, M-CPD method returns the CPD result produced by constituent K-CPD.
The baseline method, Z-score, fully assigns PVLs although γu is greater than 0.73, resulting
in zero Ω1, which leads to a failure in performing CPD for this data set.
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Table 4 CPD results of EMP1 data set.

Performance value
(sorted)

Gap from either
preceding
performance value or
upper
bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

5.00 (upper bound) – – – – – – – – – – – – –

3.00 2.00 B 2.00 0.00 B 2.00 1.23 B 2.00 2.09 A 2.00 0.73

2.80 0.20 C 0.20 2.01 B – B – A –

2.69 0.01 C – B – B – A –

2.63 0.06 C – B – B – A –

2.62 0.01 C – B – B – A –

2.57 0.05 C – B – B – A –

2.50 0.07 C – B – B – A –

2.49 0.01 C – B – B – A –

2.46 0.03 C – B – B – A –

2.44 0.02 C – B – B – A –

2.42 0.02 C – B – B – A –

2.40 0.02 C – B – B – A –

2.40 0.00 C – B – B – A –

2.37 0.03 C – B – B – A –

2.36 0.01 C – B – B – A –

2.36 0.00 C – B – B – A –

2.36 0.00 C – B – B – A –

2.36 0.00 C – B – B – A –

2.36 0.00 C – B – B – A –

2.36 0.00 C – B – B – A –

2.35 0.01 C – B – B – A –

2.34 0.01 C – B – B – A –

2.32 0.02 C – B – B – A –

2.31 0.01 C – B – B – A –

2.31 0.00 C – B – B – A –

2.27 0.04 C – B – B – A –

2.26 0.01 C – B – B – B 0.01 0.72

2.26 0.00 C – B – B – B –

2.26 0.00 C – B – B – B –

2.25 0.01 C – B – B – B –

2.25 0.00 C – B – B – B –

2.24 0.01 C – B – B – B –

2.23 0.01 C – B – B – B –

2.22 0.01 C – B – B – B –

2.20 0.02 C – B – B – B –

2.19 0.01 C – B – B – B –

2.17 0.02 C – B – B – B –

2.15 0.02 C – B – B – B –

2.13 0.02 C – B – B – B –

2.13 0.00 C – B – B – B –
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Table 4 (continued)

Performance value
(sorted)

Gap from either
preceding
performance value or
upper
bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

2.12 0.01 C – B – B – B –

2.11 0.01 C – B – B – B –

2.10 0.01 C – B – B – B –

2.10 0.00 C – B – B – B –

2.10 0.00 C – B – B – B –

2.09 0.01 C – B – B – B –

2.08 0.01 C – B – B – B –

2.07 0.01 C – B – B – B –

2.07 0.00 C – B – B – B –

2.07 0.00 C – B – B – B –

2.07 0.00 C – B – B – B –

2.06 0.01 C – B – B – B –

2.06 0.00 C – B – B – B –

2.06 0.00 C – B – B – B –

2.05 0.01 C – B – B – B –

2.04 0.01 C – B – B – B –

2.04 0.00 C – B – B – B –

2.03 0.01 C – B – B – B –

2.02 0.01 C – B – B – B –

2.01 0.01 C – B – B – B –

2.01 0.00 C – B – B – B –

2.01 0.00 C – B – B – B –

2.00 0.01 C – B – B – B –

2.00 0.00 C – B – B – B –

1.99 0.01 C – B – B – B –

1.98 0.01 C – B – B – B –

1.94 0.04 C – B – B – B –

1.94 0.00 C – B – B – B –

1.93 0.01 C – B – B – B –

1.92 0.01 C – B – B – B –

1.82 0.10 C – B – B – B –

1.78 0.04 C – B – B – B –

1.77 0.01 C – B – B – B –

1.70 0.07 C – C 0.07 0.91 B – B –

1.65 0.05 C – C – B – B –

1.62 0.03 C – C – B – B –

1.61 0.01 C – C – B – B –

1.54 0.07 C – C – B – B –

1.54 0.00 C – C – B – B –

1.54 0.00 C – C – B – B –

1.54 0.00 C – C – B – B –

(Continued)
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WGF� CPD : �0 ¼ 1� 1� 1
1þ 1:42

¼ 0:41

K� CPD : �0 ¼ 1� 0
1

� �
� 1� 1

1þ 0:23
¼ 0:82

PAM� CPD : �0 ¼ 1� 1� 1
1þ 1:48

¼ 0:40

Z� score : �0 ¼ 0� 0:04� 0:00
0:32� 0:00

� 1
1þ 0:01

¼ 0:00:

By applying WGF-CPD, EMP2 data set is conditionally discretized into PRLs 1 to 4,
corresponding to performance value ranges [24, 24], [22, 17], [15, 13], and [11, 11] with
PVIs 0, 5, 2, and 0, respectively. However, the gap γl equals 6, larger than the maximum
PVI of 5 resulting in WGF-CPD method reallocating PRLs 1, 2, and 3 to performance
value ranges [24, 17], [15, 13], and [11, 11] with adjusted PVIs 7, 2, and 0, respectively, as
illustrated in Table 5. This ensures that γl does not exceed the maximum PVI of 7, thus
completing WGF-CPD operation.

K-CPD method initially assigns PVLs 1 to 4 to the performance value ranges [24, 20],
[19, 17], [15, 13], and [11, 11] with PVIs of 4, 2, 2, 0, respectively. Consequently, the
maximum PVI of 4 smaller than γl causes K-CPD to consolidate the performance values

Table 4 (continued)

Performance value
(sorted)

Gap from either
preceding
performance value or
upper
bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

Assigned
PRL

γu, δi,
γl

m Ið Þ
i

1.51 0.03 C – C – B – C 0.03 0.72

1.45 0.06 C – C – B – C –

1.44 0.01 C – C – B – C –

1.35 0.09 C – C – B – C –

1.34 0.01 C – C – B – C –

1.34 0.00 C – C – B – C –

1.33 0.01 C – C – B – C –

1.31 0.02 C – C – B – C –

1.30 0.01 C – C – B – C –

1.21 0.09 C – C – B – C –

1.15 0.06 C – C – B – C –

1.13 0.02 C – C – B – C –

1.13 0.00 C – C – B – C –

1.11 0.02 C – C – B – C –

1.10 0.01 C – C – B – C –

1.04 0.06 C – C – B – C –

0.94 0.10 C – C – B – C –

0.91 0.03 C – C – B – C –

0.79 0.12 C – C – C 0.12 0.00 C –

0.00
(lower bound)

0.79 – 0.79 – – 0.79 – – 0.79 – – 0.79 –
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Table 5 CPD results of EMP2 data set.

Performance
value (sorted)

Gap from either preceding
performance value or upper bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

25 (upper
bound)

– – – – – – – – – – – – –

24 1 1 1 7 1 1 4 1 1 7 1 1 3

24 0 1 – 1 – 1 – 1 –

22 2 1 – 1 – 1 – 1 –

22 0 1 – 1 – 1 – 1 –

21 1 1 – 1 – 1 – 1 –

21 0 1 – 1 – 1 – 1 –

21 0 1 – 1 – 1 – 1 –

20 1 1 – 1 – 1 – 2 1 2

20 0 1 – 1 – 1 – 2 –

20 0 1 – 1 – 1 – 2 –

20 0 1 – 1 – 1 – 2 –

19 1 1 – 2 1 2 1 – 2 –

19 0 1 – 2 – 1 – 2 –

19 0 1 – 2 – 1 – 2 –

19 0 1 – 2 – 1 – 2 –

19 0 1 – 2 – 1 – 2 –

18 1 1 – 2 – 1 – 2 –

18 0 1 – 2 – 1 – 2 –

18 0 1 – 2 – 1 – 2 –

18 0 1 – 2 – 1 – 2 –

18 0 1 – 2 – 1 – 2 –

18 0 1 – 2 – 1 – 2 –

18 0 1 – 2 – 1 – 2 –

17 1 1 – 2 – 1 – 3 1 2

17 0 1 – 2 – 1 – 3 –

17 0 1 – 2 – 1 – 3 –

17 0 1 – 2 – 1 – 3 –

17 0 1 – 2 – 1 – 3 –

15 2 2 2 2 3 2 4 2 2 2 3 –

15 0 2 – 3 – 2 – 3 –

15 0 2 – 3 – 2 – 3 –

15 0 2 – 3 – 2 – 3 –

15 0 2 – 3 – 2 – 3 –

15 0 2 – 3 – 2 – 3 –

14 1 2 – 3 – 2 – 4 1 3

14 0 2 – 3 – 2 – 4 –

14 0 2 – 3 – 2 – 4 –

14 0 2 – 3 – 2 – 4 –

(Continued)
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into three clusters [24, 20], [19, 17], and [15, 11] associated with PVLs 1, 2, and 3,
respectively. Despite this adjustment, γl still exceeds the maximum PVI of 4 whereas
K-CPD terminates.

PAM-CPD method begins by assigning PVLs 1 to 4 to the performance value ranges
[24, 18], [17, 17], [15, 13], and [11, 11] with PVIs of 6, 0, 2, 0, respectively. Consequently,
the maximum PVI of 6 equaling γl causes PAM-CPD to consolidate the performance
values into three clusters [24, 17], [15, 13], and [11, 11] associated with PVLs 1, 2, and 3,
respectively. Consequently, γl is smaller than the maximum PVI of 7 and PAM-CPD
terminates.

The CPD outputs in Table 5 where WGF-CPD and PAM-CPD methods deliver
the identical results possess the following Ω′, indicating that K-CPD yields higher
degree of conditional unbiasedness. Consequently, M-CPD method selects the CPD
result of K-CPD. Z-score method assigns all PVLs although γl is greater than 3, resulting
in zero Ω1.

Table 5 (continued)

Performance
value (sorted)

Gap from either preceding
performance value or upper bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

14 0 2 – 3 – 2 – 4 –

13 1 2 – 3 – 2 – 4 –

13 0 2 – 3 – 2 – 4 –

13 0 2 – 3 – 2 – 4 –

13 0 2 – 3 – 2 – 4 –

13 0 2 – 3 – 2 – 4 –

13 0 2 – 3 – 2 – 4 –

13 0 2 – 3 – 2 – 4 –

13 0 2 – 3 – 2 – 4 –

11 2 3 2 0 3 – 3 2 0 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 1 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

11 0 3 – 3 – 3 – 4 –

5 (lower bound) 6 – 6 – – 6 – – 6 – – 6 –
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WGF� CPD : �0 ¼ 1� 4� 0
4� 0

� 1
1þ 3:606

¼ 0:217

K� CPD : �0 ¼ 1� 0
1

� �
� 3� 0
4� 0

� 1
1þ 1:155

¼ 0:348

PAM� CPD : �0 ¼ 1� 4� 0
4� 0

� 1
1þ 3:606

¼ 0:217

Z� score : �0 ¼ 0� 3� 0
6� 0

� 1
1þ 0:577

¼ 0:000

Initially, STD1 data set is discretized by WGF-CPD method into eight PVLs
representing performance value ranges [3.46, 3.04], [2.88, 2.50], [2.36, 2.00], [1.78, 1.71],
[1.55, 1.55], [1.33, 1.27], [0.93, 0.93], and [0.37, 0.18] with the largest PVI of 0.42, which is
smaller than the widest gap of 0.56. Consequently, WGF-CPD excludes AA from PVLs
resulting in an adjusted CPD result as showed in Table 6 along with the largest PVI of 0.88
larger than the widest gap of 0.56. In contrast, K-CPDmethod begins by discretizing STD1
into eight PVLs with the largest PVI of 0.40, less than γu. Even after K-CPD unassigns AA,
the newly largest PVI (0.45) still remains smaller than the widest gap of 0.56 as depicted in
Table 6. PAM-CPD discretizes STD1 into eight PVLs with the largest PVI of 1.35, greater
than γu. Therefore, PAM-CPD does not exclude any PVL from assignment at all.

Based on Eq. (2), the outputs obtained via WGF-CPD method manifests higher Ω′,
causing M-CPD method to return WGF-CPD’s result. Z-score method assigns all PVLs
whereas γu is greater than 0.37, resulting in zero Ω′.

WGF� CPD : �0 ¼ 1� 1:66� 0:00
1:66� 0:00

� 1
1þ 0:32

¼ 0:76

K� CPD : �0 ¼ 1� 0
1

� �
� 1:26� 0:00
1:66� 0:00

� 1
1þ 0:12

¼ 0:68

PAM� CPD : �0 ¼ 1� 1:58� 0:00
1:80� 0:00

� 1
1þ 0:46

¼ 0:60

Z� score : �0 ¼ 0� 1:64� 0:00
1:80� 0:00

� 1
1þ 0:13

¼ 0:00:

The last data set STD2 undergoes two rounds of conditional discretization using
WGF-CPD method, which eventually excludes PRL F as depicted in Table 7. Similarly,
K-CPD and PAM-CPD methods re-assigns only four PRLs as illustrated in Table 7. Their
Ω′ values are calculated below resulting in M-CPD method returning the CPD result from
PAM-CPD. Z-score method assigns all PVLs regardless of γl greater than 23, resulting in
zero Ω1.

WGF� CPD : �0 ¼ 1� 0
1

� �
� 33� 0
33� 0

� 1
1þ 8:70

¼ 0:10

K� CPD : �0 ¼ 1� 0
1

� �
� 24� 0
33� 0

� 1
1þ 7:80

¼ 0:08

PAM� CPD : �0 ¼ 1� 0
1

� �
� 30� 0
33� 0

� 1
1þ 7:27

¼ 0:11

Z� score : �0 ¼ 0� 33� 0
40� 0

� 1
1þ 3:11

¼ 0:00
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Table 6 CPD results of STD1 data set.

Performance
value (sorted)

Gap from either preceding
performance value or upper
bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu,
δi,
γl

m Ið Þ
i

Assigned
PRL

γu,
δi,
γl

m Ið Þ
i

Assigned
PRL

γu,
δi,
γl

m Ið Þ
i

Assigned
PRL

γu,
δi,
γl

m Ið Þ
i

4.00 (upper
bound)

– – – – – – – – – – – – –

3.46 0.54 AB 0.54 0.42 AB 0.54 0.34 AA 0.54 1.35 AA 0.54 0.34

3.46 0.00 AB – AB – AA – AA –

3.45 0.01 AB – AB – AA – AA –

3.42 0.03 AB – AB – AA – AA –

3.42 0.00 AB – AB – AA – AA –

3.36 0.06 AB – AB – AA – AA –

3.32 0.04 AB – AB – AA – AA –

3.29 0.03 AB – AB – AA – AA –

3.28 0.01 AB – AB – AA – AA –

3.26 0.02 AB – AB – AA – AA –

3.24 0.02 AB – AB – AA – AA –

3.23 0.01 AB – AB – AA – AA –

3.22 0.01 AB – AB – AA – AA –

3.21 0.01 AB – AB – AA – AA –

3.15 0.06 AB – AB – AA – AA –

3.15 0.00 AB – AB – AA – AA –

3.15 0.00 AB – AB – AA – AA –

3.12 0.03 AB – AB – AA – AA –

3.04 0.08 AB – BB 0.08 0.44 AA – AB 0.08 0.30

2.88 0.16 BB 0.16 0.88 BB – AA – AB –

2.88 0.00 BB – BB – AA – AB –

2.86 0.02 BB – BB – AA – AB –

2.81 0.05 BB – BB – AA – AB –

2.80 0.01 BB – BB – AA – AB –

2.74 0.06 BB – BB – AA – AB –

2.60 0.14 BB – BB – AA – BB 0.14 0.37

2.50 0.10 BB – BC 0.10 0.27 AA – BB –

2.36 0.14 BB – BC – AA – BB –

2.34 0.02 BB – BC – AA – BB –

2.29 0.05 BB – BC – AA – BB –

2.24 0.05 BB – BC – AA – BB –

2.23 0.01 BB – BC – AA – BB –

2.15 0.08 BB – CC 0.08 0.15 AA – BC 0.08 0.15

2.13 0.02 BB – CC – AA – BC –

2.11 0.02 BB – CC – AA – BC –
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Table 6 (continued)

Performance
value (sorted)

Gap from either preceding
performance value or upper
bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu,
δi,
γl

m Ið Þ
i

Assigned
PRL

γu,
δi,
γl

m Ið Þ
i

Assigned
PRL

γu,
δi,
γl

m Ið Þ
i

Assigned
PRL

γu,
δi,
γl

m Ið Þ
i

2.07 0.04 BB – CC – AB 0.04 0.03 BC –

2.04 0.03 BB – CC – AB – BC –

2.04 0.00 BB – CC – AB – BC –

2.04 0.00 BB – CC – AB – BC –

2.00 0.04 BB – CC – BB 0.04 0.00 BC –

2.00 0.00 BB – CC – BB – BC –

1.78 0.22 BC 0.22 0.07 CD 0.22 0.45 BC 0.22 0.07 CC 0.22 0.23

1.71 0.07 BC – CD – BC – CC –

1.55 0.16 CC 0.16 0.00 CD – CC 0.16 0.00 CC –

1.33 0.22 CD 0.22 0.06 DD 0.22 0.40 CD 0.22 0.06 CD 0.22 0.06

1.27 0.06 CD – DD – CD – CD –

0.93 0.34 DD 0.34 0.00 DD – DD 0.34 0.00 DD 0.34 0.00

0.37 0.56 Fail 0.56 0.19 Fail 0.56 0.19 Fail 0.56 0.19 Fail 0.56 0.19

0.31 0.06 Fail – Fail – Fail – Fail –

0.18 0.13 Fail – Fail – Fail – Fail –

0.00 (lower
bound)

0.18 – 0.18 – – 0.18 – – 0.18 – – 0.18 –

Table 7 CPD results of STD2 data set.

Performance
value (sorted)

Gap from either preceding
performance value or upper bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

100 (upper
bound)

– – – – – – – – – – – – –

90 10 A 10 0 A 10 0 A 10 20 A 10 12

90 0 A – A – A – A –

90 0 A – A – A – A –

90 0 A – A – A – A –

80 10 B 10 10 B 10 10 A – A –

80 0 B – B – A – A –

79 1 B – B – A – A –

78 1 B – B – A – A –

75 3 B – B – A – B 3 5

70 5 B – B – A – B –

70 0 B – B – A – B –

70 0 B – B – A – B –

70 0 B – B – A – B –

(Continued)
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Outlier sensitivity analysis
Since empirical assessment generally provides performance evaluation based on limited
datasets, the following analyses of algorithmic sensitivity to outliers (and noises) ensure
broader generalizability across dataset variations.

Outliers are extreme performance values that significantly deviate from main data
distribution. A well-designed CPD method should minimize their impact on PRL
assignments while preserving fairness in ranking.

. WGF-CPD: Outliers create exaggerated gaps between performance values. Since
WGF-CPD selects the widest gaps for segmentation, a single outlier can disrupt PRL

Table 7 (continued)

Performance
value (sorted)

Gap from either preceding
performance value or upper bound

WGF-CPD K-CPD PAM-CPD Z score

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

Assigned
PRL

γu,
δi, γl

m Ið Þ
i

70 0 B – B – A – B –

70 0 B – B – A – B –

57 13 C 13 20 C 13 17 B 13 7 C 13 7

56 1 C – C – B – C –

55 1 C – C – B – C –

54 1 C – C – B – C –

53 1 C – C – B – C –

52 1 C – C – B – C –

51 1 C – C – B – C –

50 1 C – C – B C –

43 7 C – C – C 7 6 D 7 6

41 2 C – C – C – D –

40 1 C – C – C – D –

39 1 C – D 1 16 C – D –

38 1 C – D – C – D –

38 0 C – D – C – D –

37 1 C – D – C – D –

27 10 D 10 4 D – D 10 4 F 10 4

27 0 D – D – D – F –

27 0 D – D – D – F –

26 0 D – D – D – F –

26 0 D – D – D – F –

26 0 D – D – D – F –

25 1 D – D – D – F –

24 1 D – D – D – F –

24 0 D – D – D – F –

23 1 D – D – D – F –

0
(lower bound)

23 – 23 – – 23 – – 23 – – 23 –
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distribution by unintentionally excluding either the first or the last assignable PRL. As
outliers significantly increase the largest gaps, the method will over-segment
performance values, leading to each boundary PRL covering a small or even zero
PVI in a region where the outliers are present. This uneven distribution of PVIs
undermines the fairness and consistency of the discretization process. Additionally,
the unintended exclusion of certain PRLs reduces the granularity of the CPD,
limiting its ability to accurately reflect the relative performance of individuals within the
dataset.

. K-CPD: This K-means-based method inherently mitigates outlier influence by forming
groups around majority performance data points. Outliers can pull centroids away from
the main clusters, leading to distorted PRL assignments.

. PAM-CPD: Unlike K-means, which calculates centroids as means, PAM selects actual
data points (medoids) as cluster centers, making it more robust to outliers and
preserving the integrity of PRL assignments. This is evident in STD2 where the four
performance values of 90, considered outliers, are not assigned a distinct PVL as seen in
K-CPD’s results.

. M-CPD: This method adaptively selects WGF-CPD, K-CPD, or PAM-CPD result with
the highest Ω′ metric, inherently mitigating the impact of outliers. If outliers severely
distort WGF-CPD results, M-CPD will favor either K-CPD or PAM-CPD output.
However, if outliers also affect K-CPD, M-CPD will select PAM-CPD, ensuring
robustness against extreme deviations.

Noise sensitivity analysis
Noisy data introduces small and random variations that affect performance values,
potentially disrupting PRL assignments.

Figure 1 Comparison of Ω′ resulting from each pair of method and data set.
Full-size DOI: 10.7717/peerj-cs.2804/fig-1
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. WGF-CPD: Noise artificially inflates or deflates small gaps, leading to erratic PRL
segmentation. WGF-CPD has low noise robustness as it directly relies on precise gap
values.

. K-CPD and PAM-CPD: Noise minimally affects clustering, as PRLs are assigned based
on groups rather than absolute values. In other words, noise only impacts clustering
when variance is high enough to shift assignments significantly. K-CPD and PAM-CPD
tolerate high noises as clustering absorbs small variations. However, PAM-CPD offers an
advantage over K-CPD because K-CPD assumes data points are clustered around
centroids, making it less effective for irregular or non-spherical clusters, which are often
treated as noise, reducing performance. In contrast, PAM-CPD handles such clusters
better by minimizing the sum of dissimilarities rather than variance.

. M-CPD: If noise affects WGF-CPD significantly, M-CPD selects either K-CPD or
PAM-CPD as better alternatives.

Finding and discussion
We summarize the findings along with discussions based on the CPD results as follows:

. Illustrated in Fig. 1, K-CPD tends to contribute more significantly to the output of
M-CPD compared to WGF-CPD and PAM-CPD due to higher degree of Ω′ for EMP1
and EMP2. Nevertheless, STD1 and STD2 yield the higher degrees of Ω′ when using
WGF-CPD and PAM-CPD, respectively, establishing all constituent methods as
indispensable components of M-CPD to function optimally. Notice that Z-score method
delivers zero Ω′ for all data sets due to its failure to meet Requirement 1.

. Figure 1 projects Ω′ values ranging widely among the proposed algorithms, depending
on the characteristics of the sizes and distribution of performance-value divides, within
each data set. The reasons for the highest and lowest degrees of conditional unbiasedness
in every data set are further analyzed in Fig. 2.

. Across all evaluation data sets, the Ω1 values of WGF-CPD, K-CPD, PAM-CPD, and
M-CPD consistently reach their upper bound of 1.00 in Fig. 2 since the number of
unassigned PRLs is sufficient to cover Θ with respect to each of the data sets. This
completely achieves Requirement 1 and surpasses the performance of the conventional
norm-referenced CPDmethod, Z score. Z-score method fails to unassign PVLs across all
of the data sets resulting in zero Ω1. However, if large gaps exist between performance
values within a dataset, Z-score method will demonstrate its capability for conditional
discretization. For example, in STD1, if the last three performance values adjacent to the
last one were changed to 0.18, Z-score method would exclude DD from assignment.

. The plots of all data sets indicate that WGF-CPD method tends to outperform K-CPD
and PAM-CPDmethods in terms ofΩ2 because WGF-CPDmethod determines PVIs by
prioritizing the widest gaps of performance values, thus aligning more closely with
Requirement 2.

. According to all Ω3 values presented in Fig. 2, K-CPD method tends to excel over
WGF-CPD method in fulfilling Requirement 3 as K-CPD indirectly factors in PVIs via
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Euclidian-distance model parameter, whereasWGF-CPD is totally blind to PVIs. For the
same reason, PAM-CPDmethod also outperformedWGF-CPDmethod forΩ3 in EMP2
and STD2 data sets. Without outliers, K-CPD tends to maintain more comparable PVIs
than PAM-CPD because K-CPD relies on centroids rather than medoids. Z-score
method has the highest Ω3 values across all data sets as it divides the range between
maximum and minimum t scores into equal intervals, leading to comparable PVIs.

CONCLUSION
This article proposes a CPD methodology achieving norm-referenced human-
performance assessment with a focus on AI-assisted unbiasedness. The proposed method,
namely M-CPD, integrates multi-models generated by novel WGF-CPD, K-CPD, and
PAM-CPD methods to maximize the degree of conditional unbiasedness in CPD tasks.
Initially, the definition of CPD was formalized and utilized to formulate a metric for

Figure 2 Break-down comparison of Ω1 (blue), Ω2 (orange), and Ω3 (gray) among methods for EMP1 (upper left), EMP2 (upper right), STD1
(lower left), and STD2 (lower right). Full-size DOI: 10.7717/peerj-cs.2804/fig-2
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conditional unbiasedness. The application of this metric was exemplified in details.
Subsequently, WGF-CPD, K-CPD, PAM-CPD, and M-CPD were proposed with tractable
time complexities and evaluated based on the open data sets from human performance
domains. The empirical results and sensitivity analyses indicated that all constituent
methods of M-CPD exclusively contributed to enhancing conditional unbiasedness in
norm-referenced CPD. Therefore, our methods are a promising methodology for
unbiasedness-centric norm-referenced CPD. Our future research endeavors will focus on
extending norm-referenced CPD to multi-dimensional performance values and
optimizing the scalability of each algorithm by using large-scale datasets, parallel
computing frameworks, and algorithm-specific optimization techniques.
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